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TWO-DIMENSIONAL COMPRESSIBLE FLOW IN. CENTRIFUGAL
COMPRESSORS WITH STRAIGHT BLADES

By JouaN D. Stanirz and GayrLorp O. Enuis

SUMAMARY

Six numerical ¢xamples are presented for S$teady, two-
dimensional, compressible, nonviscous flow 1in centrifugal
compressors with thin straight blades, the center lines of which
generate the surface of a right circular cone when rotated about
the axis of the compressor. A seventh example is presented for
incompressible flow. The solutions were oblained in a region of
the compressors, including the impeller Hp, that was considered
to be unaffected by diffuser vanes or by the impeller-inlet configu-
ration. Each solution applies to radial- and mired-flow com-
pressors with various cone angles but with the same angle
between blades on the conie flow surface. (The solutions also
apply to radial- and mixed-flow turbines with the rotation and
the flow direction reversed.) The cffects of variations 1in
the following parameters were tinvestigated: (1) flow rate,
(2) impeller-tip speed, (3) variaiion of passage height with
radius, and (4) angle between blades on conic flow surface.
The numerical results are presented in plots of the sireamlines
and constant Alach numéber lines.

Correlation equations are deceloped whereby the flow condi-
tions tn any impeller with straight blades can be determined
(in the region investigated by this analysis) for all operating
conditions. As examples of the information provided by the
correlation equations, the velocities along the blade surfaces are
presented for a wide range of impeller-tip Mach number, flow
coefficient (flow rate), and angle between blades on the conic
Row surface.

INTRODUCTION

At the present time, the design of centrifugal compressors
is primarily an art rather than a science. Little detailed
knowledge of flow conditions within the compressor on which
to base a rational design is available. If these flow condi-
tions could be determined, design methods might be devel-
oped for centrifugal compressors with higher aerodynamic
efficiency and better over-sll performance. For example,
the compressor efficiency would be improved if favorable
velocity distributions (with respect to boundary-layer growth
and separation) could be obtained along the flow surfaces by
proper design of the compressor.

For a given set of design and operating parameters, the
velocities and pressures within the compressor depend on the
three-dimensional fow path and on the fluid properties
(compressiblity and viscosity). A complete analysis of the
flow must include all these factors. If flow conditions are

essentially uniform in one direction, however, the flow is
adequately represented by a two-dimensional analysis in
which the fluid is considered inviscid but compressible.
Viscosity of the fluid is unimportant except within the bound-
ary layer along the flow surfaces, and this boundary layer
is thin provided favorable velocity distributions exist
within the compressor. On the other hand, compressibility
of the fluid is important in centrifugal compressors because
the large pressure ratios per stage result in density changes
that affect fluid velocities, streamlines, and so forth.

In a previous report (reference 1), a general method of
analysis is developed for steady, two-dimensional, compres-
sible flow through radial- and mixed-flow compressors and
turbines in which the center line of the passage generates
the surface of a right circular cone when rotated about the
axis of the machine. The two-dimensional flow pattern is
considered to lie upon the surface of this cone.

In the present report, these analytical methods are applied

to investigate the flow conditions within a certain region of
radial- or mixed-flow compressors (and turbines) with thin
straight blades lying on conic radii (elements). The region
investigated includes the impeller tip and is that region
considered to be unaffected by the inlet configuration of the
impeller and by the diffuser vanes; that is, the impeller inlet
and the diffuser vanes (if any) must be far enough removed
from the region investigated not to affect the flow appre-
ciably in that region. Straight blades were selected because
they were considered the most representative blade shape
now in use for aircraft centrifugal compressors.
" The purpose of this analysis was to determine the effect
of operating and design variables (impeller-tip speed, com-
pressor flow rate, variation of passage height with radius,
and angle between blades on conic flow surface} on flow
conditions within the region investigated. From this
information, limitations can be placed on the operating and
design variables if certain flow conditions are desired within
these regions. For example, if from boundary-layer con-
siderations maximum rates of deceleration of the relative
velocity are specified along the flow surfaces, 'the results of
this analysis can be used to determine limiting values of
impéller-tip speed, compressor flow rate, variation of passage
height with radius, and angle between blades on conic
flow surface.

The theoretical investigation presented herein was con-
ducted at the NACA Lewis laboratory during 1948.
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METHOD OF SOLUTION
EQUATIONS

A general analysis is developed in reference. 1 for steady,

two-dimensional, compressible flow in_compressors and
turbines with arbitrary blade shapes and arbitrary variations
in the passage height. The analysis is'limited to radial- and
mixed-flow compressors and turbines in which the cenfer
line of the passage generates the surface of a right circular
cone when rotated about the axis of the machme (ﬁg 1).

Passage= =
center
lines

~ -Impeller

v -Oiffuser.

FI16URE 1.~Fluid particle on rotating coordinate system of impeller. Center line of flow
passage generates surface of tight eireular cone with cone gngie_a.

The two-dimensional flow pattern is considered to lie on the .

surface of this cone. The method of analysis is applied herein
to radial- or mixed-flow compressors with thin straight
blades lymg on conic radii (elements) The equations de-
veloped in reference 1 are presented in this section with a

brief discussion of the coordinate system and the assumptions

and the limitations of the analysis. . -~ = -

Coordinate system.—A developed view of the conic ﬁow.

surface generated by the passage center line (fig. 1} is shown
in figure 2. The dimensionless conic_coordinates of a fluid
particle on the conic flow surface are R and 6. (All symbols
are defined in appendix A.) The coor dinate @ is consuiered
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Figure 2.—Fluid particle on developed view of conic surface, Dimensionless coordinaies
relative to impeller R, ¢, and H; tangentinl and radial componoents of velocity relative to
impeller & and v, respectively.

positive in the counterclockwise direction. The conic-  :

radius ratio R is defined by
[

R—p -

where r is the conic radius (distance along conic eclement
from apex of cone) and the subseript T refers to the impeller
tip. The coordinate system (R,f) rotates in the posilive
direction_of 8 with the angular velocity « of the impeller.
The passage-height ratio H, in the direction normal to the
conic flow surface (fig. 2), is a continuous function of the
conic-radius ratio A.

.2

h
H=p=1®

wheroe % is the passage height at any conic-radius ratio A.

Assumptions and limitations.—This analysis assumes that
flow conditions are uniform across the passage normal to
the conic flow surface; that is, the flow varies only along the
conic flow surface. In order to satisfy this assumption, it
is necessary that: {1} the gradient of A with respect to r be
smell; and (2) the cone angle & be sufficiently close to 180°.
The allowable variation in « from 180° will depend on the
ratio A/r and on the desired accuracy. For the hypothetical
limiting cage in which Afr approaches zero everywhere along
the comc flow surfacs, the analysxs is accurate for all vnlucs '
of . —

Velocity-ratio components.—The fluid parucle on the
developed conic flow surface in figure 2 has a relative
tangential-velocity ratio U and aradial- (along conic element)
velocity ratio V. These velocity ratios are defined by

JE 2 A )
and :
y?
=% S CL)
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where
% tangential component of velocity relative to impeller
in positive direction of @ (fig. 2)

v radial (along conic element) component of velocity
(fig. 2)

¢ local speed of sound

Subseript: '

0 absolute stagnation condition in region of uniform flow
upstream of impeller

Stream function y.—A dimensionless stream function ¢

satisfies the continuity equation if defined as

oy
6‘5—-;‘ VHR (4&)
and 5
v__»p
op——= UH (4b)

where p is the weight density.

The stream function ¢ is constant along the blade surface.
If ¢ and @ are assigned values of zero along the positive
blade surface {the blade surface in the positive direction
of 8), the value of ¢ along the negative blade surface (the
blade surface in the negative direction of 8) is given by

Yr=pAl (5)
where Af, the angle between blades on the conic flow surface,

is given by

9~

Ag="g sin 5 (6)
and where -
O peints M
* where
ar=B(AO)rrhy (7a)
where
@ compressor flow coefficient
W total compressor flow rate
a annular flow area (normal to conic flow surface)
B number of passages (or blades)
Subscript:
n negative blade surface (blade surface in negative

direction of 8)

Differential equation.—The differential equation for the
stream-function distribution in compressors with thin
straight blades lying on conic radii (elements) is obtained
from equation (14) of reference 1 in terms of transformed

coordinates £ and 7.
2 d(log, 2
..JIT £ (1_\6)2 exp [(m—‘—2)$A6]—a v oY L—&)_

og D? ot ot
o (1°g¢ )
d1  Og

(AG) (8

Ay 3]
where the impeller-tip Mach number 1/ is defined ss
PR 4
wr'r S0 3
Mp=—y— ®

The transformed coordinates £ and 4, which for thin straight
blades lying on conic radii are related to R and 6 by

log, R
=0 (102)
@
=% (10b)

have been introduced because they result in parallel blades
in the transformed plane. Such a transformation is desirable
because it simplifies the solution of the differential equation
by relaxation methods.

In equation (8), the passage-height ratio H is assumed to
vary with the conic-radius ratio according to

H=R= (11)

where m is an arbitrary exponent. (For m=0, the blade
height remains constant and for m=—1.0, the flow area normal
to the conic flow surface remains constant.)

In order to solve equation (8), it is necessary to know the
density ratio, which is related to the impeller-tip Mach
number and the relative velocity ratio @ by (equation (11),
reference 1)

1
P (TR 12
Peo }
where v is the ratio of specific heats and
E=024V? (13)

and the absolute whirl of the fluid upstream of the impeller is
assumed to be zero. The velocity @ (multiplied by p/p,) is
in turn given by equations (4), (10}, (11), and (13) as

» = erp{(;J.-l)EMll: 3t) +(5 )1 14

Equations (8), (12), and (14) provide three equations with
three unknowns pfp,, @, and ¢.

NUMERICAL PROCEDURE

The system of equations (8), (12), and (14) is solved by
relaxation methods to obtain the stream-function distribution
within the compressor. From this distribution, the velocity
components and other conditions can be determined using
equations (4) and so forth. Detailed outlines for the
numerical procedure are given in references 1 and 2. The
procedure is briefly sketched herein.
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Outline of procedure.~—In order to solve the system of

equations by relaxation methods, the following procedure is

employed: | .

(1) Equations (8) and (14) are changed to finite- dlﬁerence
form_(to be discussed).

(2) Valués of ¢ are spemﬁed on the boundarles of the ﬂow’
region. e

(3) Values of ¢ are estlmated at equally spaced points of a
grid system within the boundaries of the flow region.

" (4) The preceding estimated . values of ¢ are adjusted”.

(relaxed) by the relaxation process until they satisfy equa-
tion (8) in finite-difference form. _ N
(5) The boundary values of ¢ in the vaneless diffuser are
adjusted to satisfy the Joukowski condition for tengency of
flow leaving the tip of the impeller blade.
(6) After the Joukowski condition has been satisfied, the
grid spacing is reduced near the impeller tip in order to obtain

detailed knowledge of the flow characteristics in tlus regmn

where conditions are rapidly changing.
Finite-difference equations.—Equation (8) is changed to
the following finite-difference form (reference 1):

¢1+¢2+¢3+¢;—4¢;(_\"%@(10g,E_log;_z_i)_

(%th) (10g, ‘% —log, 5_: — ﬂ;—b (AB):@/;—%) —

2MTP£ (A6)% exp [(m-2)£A8] B2= (15)
9 - . P
where .
b grid spacing (ﬁg 3) )
R residual (error) due to estlmated values of \0 used dur-
ing relaxstion solution :
1 R —
1 . A
-+ +
S s T

F1a9URE 3 —SampIe grid showing grid spaving & and numerical subscnpt conventicn for .

adjacent grid points.
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Subscripts:

1,2, 3, and 4 quant1t1es at adjacent grid points as defined
" in figure 3 (Quantities without numerical
subseripts refer to grid point at which R is
being computed.)

From equation (12), the natural logarithm of the denmt.y
ratio (required for the solution of equatmn (15)).1s plotted
as a function of the flow-rate ratio Q@ofp, in figure 4. The

- flow-rate ratio is obtained from equation (14), which in

finite-difference form becomes

- 2o~ () a—v 21 (16)
i 26(A6) exp [(m+1)EA6]
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FiGURE 4.—Natural logarithm of density ratio log, pfpe a8 function of flow-rato ratio prp- fnr
varlous values of RAMr. Equation (12); ratio of specific heats v, L4,
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"Fioure 5.—Relaxstion grid in plane of transformed coordinates.
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Boundary values of .—The stream function ¢ is constant
along the blade surfaces. If the value of ¢ is arbitrarily
set equal to zero along the positive blade surface, the value
along the negative blade surface is given by equation (5).
Values of ¢ along the left boundary (fg. 5} are obtained

Flow region investigafed

R=1.2768" N
- . H.RM
- ———mm---- hy -
R=08578* |
=1.2657
=06752

® For examples 5 ond 6, R
* For examples 5 and ad 6 R

Figrre 6.—Compressor-design cheracteristics for namerical examples.

from the simplified analysis of reference 1, which assumes
that the flow is parallel to the blade surfaces. Values of
¢ along the boundaries of constant x in the vaneless diffuser
are est1ma.ted by & one-dimensional analysis of the flow
(reference 1), which assumes the moment of momentum to
be constant. (Note that these boundary values of ¢ in the
diffuser are only approximate and must therefore be relaxed
along with the values of ¢ at interior grid points, as indicated
in reference 1.} At any value of £ in the vaneless diffuser,
the values of ¢ along the boundary #=1.0 are ¢, greater
than the values of ¥ along the boundary n=0. The values
of ¢ along the downstream boundary of the diffuser (fig. 5)
vary linearly.

Estimated interior values of yY.—Correlation equations
developed in this report (and presented in a later section)
provide a first approximation for ¥ at grid points within the
impeller passage. The error in these estimated values of
¢ will, in most cases, be less than =:1 percent of ¢,.

Relaxation process.—The residuals R that result from the
estimated interior values of ¥ are computed at each grid
point by equation (15). These residuals are then reduced
(relaxed) by suitable changes in the values of . The detailed
procedure is given in references 1 and 2.

Joukowski condition.—The Joukowski condition requires
that the streamline leaving the blade surface be tangent to
the blade tip. This condition generally is not satisfied by the
initial relaxation solution because for this solution the bound-
ary values of ¢ along the downstream boundary in the vane-
less diffuser (fig. 5) are obtained from the estimated variation
in ¢ along the boundaries of constant  in the diffuser (dis-
cussed in the section Boundary values of ¢). In order
to satisfy the Joukowski condition, the values of ¥ along
the downstream boundary must all be changed by the same
required amount and this change in the boundary values of ¥
results in changes in ¢ at each of the interior grid points.
The manper in which these changes in ¢ are made to satisfy
the Joukowski condition is discussed in reference 1.

 figure 7 (a).

RESULTS

~ Seven numerical examples are presented. One of these
examples has been selected as the “standard” and in each
of the remaining examples one parameter is varied from the
standard conditions as shown. in the following table:

Example ' Mr m (de) Type of flow
Standard._.._..... 0.5 L5 | —L0O 12 Compressible (y=1.4}
1 N L5 | —l.0 12 Compressible (y=14)

.9 L5 | —-1.0 12 Compressible §T= 1.4}
N3 20 | —LO 12 Compressible (y=1.4)
g3 LE | —1.4% 12 Compressibls Eys iL4)
.5 1.5 | 1.0 18 Compressible (y=1.4)
.5 L5 | —LO 18 Incompressilile

By comparing the solution for the standard example with
one of the nonstandard examples, the effect of the change
in a single design or operating parameter on flow conditions
in the compressor can be determined.

These examples are for impellers having straight blades
(Ag. 6). The solutions were obtained in a region of the
compressors (including the impeller tip, fig. 6} that was
considered to be unaffected by the inlet configuration of the
impeller and by the diffuser vanes; that is, the diffuser vanes,
if any, must be far enough removed from the impeller not to
affect the flow region being investigated. Each solution
applies, within the limitations imposed by the assumption of
two-dimensional flow, to radial- and mixed-flow compressors
(and turbines) with conie flow surfaces having various cone
angles a but the same angle between blades on the conic flow
surface Af (reference 1).

The numerical results are presented in plots of the stream-
lines and constant Mach number lines.

Streamlines.—The streamline configurations (relative to
the impeller) for the seven examples are shown in figure 7.
The streamlines are designated in such a manner (Y/y,) that i
the value of & streamline indicates the ratio of the flow that
lies between the streamline and the positive blade surface fo
the total flow in the passage. For a given density ratio, the
streamline spacing is indicative of the velocities relative to
the impeller, with close spacing indicating high velocities and
wide spacing indicating low velocities.

The streamlines for the standard example are given in
For the design and operating conditions of this
example, an eddy has begun to form on the positive blade
surface. This eddy results from negatxve velocities on and
near the blade surface. The fuid in this eddy rotates
(relative to the impeller) in the oppesite direction to that of
the impeller so that the absolute motion of the fluid is irrota-
tional. In actual practice this eddy is probably unstable
and it is desirable to eliminate the eddy by proper changes in
the design and operating conditions of the compressor.
From an inspection of figure 7, it appears that the eddy can
be reduced or eliminated by increasing the flow coefficient ¢
{figs. 7 (b) and 7 (c)), decreasing the impeller-tip Mach
number M, (fg. 7 (d)), decreasing the angle between

blades on the conic flow surface A9 (fig. 7 (f)), and using

incompressible fluids (fig. 7 (g)). The eddy in figure 7 (d)
(impeller-tip Mach number of 2.0) is especially interesting
because it occupies more than one-half of the available flow
ares at a radius ratio of 0.90.
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(a) Stendard example: flow coefficlent ¢, 0.5; T (b} Emmple_—l: flow coefficient ¢, 0.7; other
impeller-tip Mach number My, 1.5 : .. . . = parameters same as standard example.
constant flow area (m,—1.0); angle be- : oL - :
tween blades on conic flow surface A8, 12°;

compressible low (v, 1.4).

FIGURE 7.—Relative strcamlines for fiow through centrifugal compresgor with straight
blades.

Streamline deslgnation indicates ratio of Bow that lies between streamline and
positive blade surface (right side of passage) to total flow in passage,
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(¢} Example 2: flow coefficient ¢, 0.9; other
parameters same as standard example.

{d) Example 3: impeller-tip Mach number
M, 2.0; other parameters same &s stand-

ard example.
FIGURE T.—Continued. Relative streamiines for flow thromgh centrifugal compressor with
straight blades,

Streamline designation indicates ratfo of flow that lies between streamline
and positive blade surface (right side of passage) to total flow in passage.
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(e) Example 4: varying flow area (m,—1.4);

other parameters same. as standard ex-
ample.
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Figuex 7.—Continued. Relative streamlines for ﬂow through centrifugal compressor with

straight blades. Streamline designation indicates ratio of flow that lies between stream-

line and positive blade surface (right side of passage) to total: flow in passage.

The exponent m determines the change in flow area

through the impeller and the diffuser.

For m equal to. —1.4

(example 4), the flow-area ratio (flow area divided by flow
area at impeller tip) at a radius ratio of 0.5 is 1.32 compared
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to a ratlo of 1.0 for the standard example (in “hlch m

equals —1.0).

tion in the flow region investigated is inappreciable (compale

figs. 7 (2) and 7 (e))-

The reason for this small effect is that

the flow areas at the impeller tip are the same (because  is the
same) and for reasonable values of m are not much different

vicinity of the tip, fig. 6).

.anywhere in the flow region investigated (which is in the
If the area ratio 1.32 had been

obtained by maintaining equal flow areas for both impellers
at the radius ratio 0.5 within the impellers and deereasing
the area af the impeller tip in one case, the streamline con-

figuration would be greatly affected. This effect,

change in ¢ (which results from the change in a7).

however, -
would not _he the result of the change in m but mther of the

-The large effect of compressibility on the streamline
configuration (and therefore on the other flow conditions) is

‘shown by a comparison of figiires 7 (f) and 7 (g).

The large

eddy that exists for compressible flow complctelv disappears

for incompressible flow. -

Mach number lines.—Lines of constant Mach number |
relative to the impeller are shown for the seven examples in

figure 8. It should be.noted that the Mach number in the

1ncompress1ble solution (fig. 8 (g)) is a fictitious quantily

that is equal to the fluid velocity ¢ divided by a constant
that is equal to the inlet stagnation speed of sound ¢, of

‘whatever compressible solution with which the incompressi-

ble solution is being compared. This inlet stagnation speed

of sound is also contained in the definitions of ¢ and Afr5, so .

that for the incompressible solution g¢/c,, ¢, and

My vary

inversely with the assigned value of ¢,, but ratios of these

parameters are unaffected.
The standard example is given in figure 8 (a).
eral characteristics of these plots are similar.

The gen-

The velocities

(as indicated by the Mach number lines) along the positive

blade surface are low; the velocitics along the negative blade . .

surface are high; and the velocities becoms equal on the
positive and negative blade surfaces at the.blade tlp (as

required by the Joukowski condition).

The maximum

Mach number occurs on the negative blade surface at a

radius ratip well within the impeller and the flow decelerates |

along the blade surface from.this peint to the blade tip.
This deceleration, which for impellers with straight blades

and the usual type of area variation with radiug ratio becomes

rapid near the blade tip, is conducive to boundary-layer

separation, which lowers the compressor efficiency.

If the boundarylayer wake in the vaneless diffuser is

neglected, the velocities become essentially uniform at &
radius ratio of approximatcly 1.10 for A6 equal to 12°
(figs. 8 (a) to 8 (¢)) end at & radius ratio of approximately 1.15

for A6 equal to 18° (figs. 8 (f) and 8 (g)).

value of ¢ approximately equal to 0.45.

the vaneless portion of the diffuser immediately following
the impeller therefore become essentially un1f01m at a value

of £ approximately equal to 0.45.

The effect of m on the streamline configura-

These radius
ratios and their corresponding angles are equivalent {o &
Flow conditions in
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() Example 5: angle between biades on () Example 6: incompressible fiuid; other parameters seme as example 5 (fig. 7(f)). Note
conie flow surface Ad, I8% other parameters that ¢ and M7 are based upnn constant ca, which If considered equal te speed of sound at
same as standard example.

inlet conditfons of example 5 enables eomparison of compressible (example 5) and inecom-
pressible {(example 6) solutions for same impetler-tip speed, weight-flow rate, and so forth.
FicrRE 7.—Concladed. Relative streamlines for Sow through centrifugal compressor with straight blades.

Streamline designation iniicates ratio of flow that lies between streamiine
and positive blade surface (right side of passage) to total flow in paseage.
For the compressible-flow examples, the relative Mach
number at the impeller tip is low (even for large values of )
because of the high density ratios, which result from the
high impeller-tip speed. These veloeities would be con-
siderably higher if the effective flow area were reduced by

boundary-layer separation, which might be expected in
practice.

Slip factor.—The impeller slip factor Is defined as the
ratio of the average absolute tangentisl velocity of the fluid
at the impeller tip to the tip speed of the impeller. The
slip factor has been computed for each of the seven examples.
by methods given in reference 1.

The resulting slip factors.
are given in the following table:

Esample Nt | ot
From an inspection of figures 8 (a) to 8 (g), it appears
that the maximum Mach number (on the negative blade | = [ standaed.__:f . 0.834
. : . . w=0.7 -937

surface) is increased by increasing the flow coefficient ¢ ey 38
(figs. 8 (b) and 8 (c)), is apparently not much affected by A 93¢
increasing the impeller-tip Mach number Afy (fig. 8 (d)) or plpe=1.0 “882
by changing the exponent m (fig. 8 (e)), and is increased e o
by increasing the angie between blades on the conic flow Also, A8=18°.

surface A@ (fg. 8 (f)) or by changing to an incompressible
Auid (fig. 8 (g)) (in which the Mach number is a fictitious

It appears
quantity, as previously indicated).

that the only variable investigated that affects
the computed slip factor is the angle between blades on the

conic flow surface A8. In particular, it will be noted that
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{a) Standard example: flow coeffieient ¢, 0.5;

impeller-tip Maeh number Mp, L.5;

“(b) Example 1: flow coclictent ¢, 0.7; other

parameters same as standard example.
constent flow area (m,—1.0}; engle be- ot :
tween blades on conic flow surface A8, 12%; ' : e
compressible flow (y, 1.4). - -

i

FIGURE 8,—Lines of constant Mach number relative to impeller,



TWO-DIMENSIONAL COMPRESSIBLE FLOW IN CENTRIFUGAL COMPRESSORS WITH STRAIGHT BLADES

@

B

Relotive
Mach number
055

-

50

.35

S (-
NN \\]{
AN

NN

\

rodius ratio R
&

8

Conic-

75§

\
AR A
N

.95
%2 10 8 6 4 2z
Argle, 8, deg
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M, 2.0; other parameters same as stand-

ard example.

FiGURE 8.—Confinued. Lines of constant Mach number relative to impeller,
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(8) Example 4: varymg flow area (m. 14); ez
other parameters Same a8 stan'dard. LT
example. QIR e -

Fioure 8.—Continued, Lines of constant Mach number reletive to impeller,

the slip factor is approximately the same for compressible and
incompressible flow (compaf€ examples 5 and 6), aIt,hough
the streamline configurations for the two examples are very
different {compare figs. 7 (_f):__f_;nd 7 ().

| transformed coordinates (¢ and 4).

CORRELATION OF RESULTS

Correlﬁj;mn equatlons are presented whereby the ﬂow
conditions (U, V, ¥/¢, and so forth) within any 1mpcller
with straight blades can be determined (for the flow region
investigated herein, see. fig. 6) from the flow conditions for

“ the standard solution of this report. These correlation
equations are developed in a,ppendlx B and the flow condi-
tions for_the standard solution are given in tables I to TIL

The correlation equations are developed in terms of the

The dimensionless conic

coordinates B and @ are related to these transformed co-
ordinates by

R=ezp(§ad) (B3)

B4

. Stream-function ratio ¢/y¥,—Thestream-function ratio /¥,
'varies across the impeller passage from 0 along the posi-
tive blade surface of one blade to 1.0 along the negative
blade surface of the next blade. At any given point (¢ and 4)
within the impeller, the value of the stream-function ratio
for any impeller (with straight blades) and for any operating
condition’ can be estimated by the following cmrclatio'fl_'
equation (appenghx B):

A [‘( ):l*

and

T aiag e

_ ‘where the prime indicates the estimated value of flow comh-

tion (stream-functmn ratio in this case) et a given point
(¢,1) and the subscript s indicates the standard value of
flow condition at the same point. Also,

ot v A_ .ZLITAB .
- A4S0,

(32__)'.

V= ¢ (BQ)
B pH _
and, if the absolute whirl ahead of the impeller is zero,

: o o _ s Hl— = T
y— £ ' (B10)
e L G ]

\vhere Lhe subscupb m mdlca.tcs tho mean valie at a ngen
radius ratio B (that is, at a given value of E, which is related
to R by equation (10a})).

The -estimated. values of the stleam-functwn ratio ¢/, /z/x,,
obtained from the correlation equation (B16) are compared
in ﬁgure 9 with the relaxation values of ¥f¢, obtained for the
numerical examples of this report. Valucs are plotted for

- avery other grid point across the passage at values of ¢ indi-

~cated by the: symbols. Pcufect couela,tlon couesponds 10
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(0 Example 5: angle between blades on
conic fow surface A4, 18°; other parameters
same as standard example.
the 45° line on this plot.

tions, less than 0.01, where the error is defined as

Error= (j’ :}/b

The negative values of ¥/, shown on the correlation plot
corresponrd to eddies, which were shown in the previous

section to form on the positive blade surface at low flow
rates and at high tip speeds.

The stream-funetion ratio is
always zero at the positive blade surface and always 1.0 at
the negative blade surface,

Radial-velocity ratio ¥ —The radial-velocity ratio can be
estimated by the following correlation equation (appen-
dix B): °

V' =Vt AV~ Va) ot

&

Relaive Maoch number .
(fictitious, see sublegend]}

1.20 . 0.80
& \ \ 75

L5 \ L’.m
65

L1G ‘L”T’ s
60

105 ‘ j;
55 \ /|

& .00 \ 60 .

S .65\ " \ [ I
.80 | / '
75
75
.70
80, /
65

g 16 4 1210 8 8 4 75
Angle, 8, deg

(2} Example 6: incompressible fuid; other parameters same as example 5 (82.8 (). Note
that @ and My are based npon constant e,, which if eonsidered equal to speed of sound at

The error is, with very few excep-

inlet conditions of example 5 enables comparison of compressible (example 5} and incom-
pressible (example 6) solutfons for same impeller-tip speed, weight-flow rate, and so forth.
For incompressible fluids the relative Mach number is Sctitious and Is equal to relative
velocity ¢ divided by constant e,.

Fi6tRE 8.—Concluded. Lines of constant Mach number relative to impeller.

The estimated values of the radial-velocity ratio ¥V’ ob-
tained from equation (B13) are compared in fgure 10 with
the values of V obtained from the relaxation solutions of
this report. Values are plotted for every other grid point

across the passage at the values of ¢ indicated by the sym-
bols. Perfect correlatidn corresponds to the 45° line on this
plot. The error is less than 0.01 where the error is defined
as

Error=(V'—V1)

The negative values of V shown in the correlation plot

correspond to the eddies that form on the positive blade
surface at low flow rates and at high tip speeds.

Tangential-velocity ratio U.—The relative tangential-

velocity ratio can be estimated by the following correlation
equation (appendix Bj:

A2g—1) 3(% [A6— (A6),]+ (R—Ry) (MA6) } (B13)

U'=AU, (B1)
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F16URE 9.—~Comparison between exact (relaxafion squt{on) end estxmated (carrelation equatinn (Blﬁ)) va.lues of strea.m-{unctiou muo [or vanous \alucs of R (l’unction ol E and .\n) anv] [

The estimated values of the relative tangentml—velomtv
ratio U’ obtained from equation (B1) are compared in fig-
ure 11 with the valuesof U obtained from the relaxation solu-
tions of this report. Values are plotted for every grid point
across the first half of the passage for the values of ¢ indicated
by the symbols. Perfect ¢orrelation corresponds to the 45°
line on this plot.. Except for the incompressible solution
(example 6), the error is less than 0.01 Where the error 1s
defined as’ : R o

Frror ( U’ U)

The relative tangentml—velomtv ratlo is. always zero along
the blade surfaces.
Other flow cond1t10ns —~Other ﬁow condxtlons w1thm the

1mpe11er can be determmcd from_ the values of U and ¥V

obtained by the correlation equa,tmns (B1) and (B13).

The relative velocity ratio @ is given by
Q=0+ V" (3)

" From the steady-flow energy equation, the t-empemti'iré.
ratio is given by (equation (10), reference 1)

L _1:_1+72 [(BAM)?— "]

where . T is the absolute static tempemtum of the gas and

~where the absolute whirl uhead of the impeller is assumed Lo
~bezero.

Ll R, - B g e J L
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FicTRE 10.—Coniparison between exaet (relaxation solution) and estimated {correlation equation (B13)) values of radial-velocity ratio for various values of R {function of £ and A8) and 4.

The density ratio pfp, and the pressure ratio p/p, are

obtained from the temperature ratio by

1

1 1
2 (F) =P -l

(12)

and
v

;%=(%)7i_l= st Rar-eaf

The local relative Mach number is related to @ and the
temperature ratio by

7,
M=Qy/7F

Correlation of velocities along blade surfaces.—Of special
interest, because of boundary-layer considerations, are the
velocity distributions along the positive and negative sur-
faces of the impeller blades, €, and @,.
of @, obtained from the correlation equations are given by
the curves in figure 12 for each of the numerical examples
in this report. The values of @, obtained by the relaxation
solution are shown by the plotted points. The agreement is
seen to be excellent in all cases.

Estimated values of @, obtained from the correlation
equations are given by the curves in figure 13 for each of
the numerical examples in this report. The values of @,
obtained by the relaxation solution are shown by the plotted
points. Again the agreement is excellent. .
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Slip factor.—The impeller sl
ratio of the absolute tangentml velocity of the ﬂu1d at the
impeller tip to the t1p speed of the impeller. The following
correlation equation is developed in appendix C fm th& slip
factor of impellers with straight blades:

p=1—(1—

o

For the sta.ndard solutxon, (AB), is 0 2095 radmn nnd TR 1s
0.934 80, thab the slip-factor equation becomes

' '(1_'75

This equatlon is pIotted in ﬁgme 14 together with Stodola s
equation "Whlch for strmght blades is glven by

T

p.-—-l 0 500A0

p'=1-0.315A8
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The slip factors obtained for the numerical examples of
this report are plotted as points in figure 14. These points
indicate that the slip factor is independent of the flow rate,
impeller-tip speed, and variation in passage-height ratio
with radius and depends only on the angle between blades
on the conic flow surface A#.
ment with Stodola’s equation although the magnitude of the
slip factor given by Stodola is lower. .

APPLICATION OF CORRELATION EQUATIONS

The correlation equations presented in the previous section
are important because they provide rapid solutions (in the
regions investigated herein, fig. 6) to the differential equa-
tion, which determines the flow conditions (U, V, p/p,, and
so forth} in any impeller (with straight blades) for all operat-
ing conditions. An important application of the correlation
equations is the determination of velocities along the flow
surfaces because these velocities are significant in the study

of the boundary layer. As examples of the information pro-

vided by the correlation equations for such a study, the
velocity ratios along the blade surfaces have been computed
over a wide range of impeller-tip. Mach number 3/, flow
coefficient y, and angle between blades on the conic flow
surface A6,
to 17.

Impeller-tip Mach number My.—The effect of AL, on the
velocity ratios along the positive and negative blade surfaces
is shown in figure 15.
conditions (other than 3f;) were maintained constant at the
standard values.

For 1y equal to zero, the velocities are equal on both
surfaces of the blade. For all other values of 3/, the
relative velocities are higher on the negative blade surface
than on the positive blade surface and as the impeller-tip
speed increases the difference in velocities along the two
surfaces increases. KExcept near the tip, this increase in
velocity difference results primarily from a decrease in
velocity along the positive blade surface and for high values
of Afy this velocity becomes negative, which indicates the
presence of an eddy. The small effect of A, on @, results
from & combination of effects. At higher values of A1, the
difference between , and the mesn radial-velocity ratio
Voa increases, but V, itself decreases because of the increased
density; the net result is only a small change in @, with

10—
19 A
-4 \_\ i\\ 49027)‘
e Example Condition [—. | | T =07 (77
2 © 0  Stondord 0] T
8 8—a = 07 e 778) —
= = A
a 2 e= 09 \*)Ebb/o
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N 4 m=-14 N
‘a5 Ag= 18
> 6 plp= 10
“Als AH 18‘
.6 i
a
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Angle A8 between blodes on conic flow surface, deg

FIGURE 14¢.—Comparison among slip factors ebtained from relaxation ﬂaIuttons, correlation
equstion (17), and Storlola’s equation (18). .

This conclusion is in agree-.

These computations are presented in figures 15

In this figure all design and operating -
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REPORT 954—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

changes in M. At the blade tip, the velocity becomes equal

on both surfaces and this velocity decreases with increasing

My because of the higher gas density.

Flow coefficient o.—The effect of flow coeflicient ¢ on ihe
veloc1ty ratios along the positive and negative blade surfaces
is shown.in figure 16. In this figure, all design and operating

_condltmns (other than the flow coefficient) were maintained
" constant at the standard values. '

At each radius ratio, the difference betwéen @, and @, is
independent of ¢ (that is, remains constant). The mean
radial-velocity ratio V,, however, decreases with decreasing
flow coefficient and for low fow coefficients @, becomes
negative, which indicates the presence of an eddy. At the
blade tip, the velocity becomes equal on both surfaces and
this velocity increases with increasing flow coefficient because
of the increased mean radial velocity V-

For ¢ equal to zero, the velocities are equal on both
surfaces of the blade (but opposite in sign). As a result the
pressures on” both blade surfaces are equal and no work is
done by the impeller.
ig an eddy -

Angle between blades on conic flow surfa.ce Ab. —The
effect of A9 on the velocity ratios along the positive and
negative blade surfaces is shown in figure 17. In this figure
all design and operating conditions other than A6 were
maintained constant at the standard values. Increased
values of Af indicate fewer blados.

The correlation equatmn (B13) used to_obtain the curves_'

plotted in figure 17 is developed in terms of the transformed
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FIGURE 17.—Effuct of angle between blades on conle flow surfuce 49 on relutive \‘QlOle..}. o

ratio along positive and negative blade surfaces. Correlution equation (B13); dashed
lines obtuined from simplified analysis (equntxon (19)); Aow cocflicient ¢, 0.5; impeller-tip
Mach number Mr. 1. B; con%tant flow area (m,—l 0), comprcsslble fiow (1-, 1.4). L.

The entire flow vxtlun the passnve'"”
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coordinate % which is related to the radius ratio R by an
expression (equation (B3)) that includes the angle between
blades on the coniec flow surface Af. The minimum value
of £ for which standard values of I7, V, and so forth are
given in tables I to IIT is —1.7030, which for values of A#
less than standard (A8=12°) corresponds to values of R
greater than 0.7, as indicated by equation (B3) and shown
in figure 17. For values of R less than those resulting from
£equal to —1.7030, however, the simplified analysis presented
in reference 1 for impellers with straight blades may be used
to extrapolate the ecurves to all lesser values of R. In
terms of the mean velocity ratio V, (equation (B9)), the
simplified equation for the veloeity ratio becomes (Note
that the simplified analysis of reference 1 assumes L'=0.)

Q== Vot RIMzA8 [2 A%)— 1] (19)

where V" equals ¥V, midway between blades ‘(that is, when
6=A68/2). Equation (19) has been used to extrapolate the
curves for values of A@ less than 12° in figure 17 (dashed
lines}. For values of £ less than —1.7030, the simplified
analysis given in reference 1 can be used to determine the
flow conditions within the impeller passage for any design
and operating condition. For values of ¢ greater than
—1.7030, the methods of this report must be used to deter-
mine V, p/p,, and so forth.

For Af equsal to zero, the velocities are the same on both
surfaces of the blade and are equal to the mean velocity
Vw (dashed line). This mean velocity is the same for all
values of A8, but the difference between V,, and @, increases
with increasing values of A@ so that, for large values of A§, @,
becomes negative, which indicates the presence of an eddy.

SUMMARY OF RESULTS AND CONCLUSIONS

Six numerical examples are presented for steady, two-
dimensional, compressible, nonviscous flow in centrifugal
compressors with thin straight blades, the center lines of
which generate the surface of a right circular cone when
rotated about the axis of the compressor. A seventh ex-
ample is presented for incompressible flow. The solutions
were obtained in a region of the compressors (including the
impeller tip} that was considered to be unaffected by the
inlet configuration of the impeller and by the diffuser vanes.
(That is, the impeller inlet and the diffuser vanes, if any,
must be far enough removed from the region investigated
not to affect the flow appreciably in that region.) The
effects of variations in the following parameters were investi-
gated: (1) flow coefficient (flow rate), (2) impeller-tip Mach
number, (3) exponent for the variation of passage-height
ratio with radius ratio, and (4) the angle between blades on
the conic flow surface. Each solution applies to radial- and
mixed-flow compressors {and turbines with the rotation and
flow direction reversed) with various cone angles but with
the same angle between blades on the conic flow surface.
The numerical results are presented in plots of the stream-
lines and constant Mach number lines.

Correlation equations are developed whereby flow condi-
tions (streamlines, velocities, pressures, impeller slip factor,
and so forth) within any impeller with straight blades can
be determined (for flow region mveatlgated) from the How

anggir X1 10

159

conditions of the standard solution presented. As examples
of the information provided by the correlstion equations, the
velocities along the blade surfaces have been computed (and
plotted) over a wide range of impeller-tip Mach number,
flow coefficient, and angle between blades on the conic flow
surface. .

The principal conclusions resulting from the work pre-
sented herein are:

1. The exponent m, which was used in this analysis to
specify the wvariation in passage-height ratio with radius
ratio, has only a small effect (for practical values of m) on
the area variation in the flow region investigated and there-
fore has only a small effect on the flow in this region.

2. An eddy forms on the positive blade surface at high
impeller-tip Mach numbers, low flow coefficients, and large
angles between blades on the coniec flow surface. At an
impeller-tip Mach number of 2.0 (and the standard values
of flow coefficient and angle between blades on the conie
flow surface), the eddy occupies more than 50 percent of
the flow area at a radius ratio of 0.90.

3. Compressibility has a large effect on the streamline -
configuration within the compressor (and therefore on the
other flow conditions). For example, the Jarge eddy that
exists in the compressible-flow example (with the same param-
eters as the incompressible example) completely disappears
in the incompressible example.

4. The maximum relative Mach number occurs on the
negative blade surface at a radius ratio well within the im-
peller, and the flow decelerates along the surfuce of the blade
from this point to the blade tip. This deceleration, which
for impellers with streight blades and with the usual type of
ares variation with radius ratio becomes rapid near the
blade tip, is conducive to boundary-layer separation.

5. If the boundary-layer wake in the vaneless diffuser is
neglected, the flow conditions in the vaneless diffuser follow-
ing the impeller become essentially uniform at a value of &
approximately equal to 0.45.

6. For the high impeller-tip Mach numbers investigated
(and if boundary-layer effects are neglected), the relative
velocities at the impeller tip are low because the high
impeller-tip Mach numbers result in high fluid densities.

7. The maximum relative Mach number (on the negative
blade surface) is increased by increasing the flow coefficient
or the angle between blades on 'the conic fow surface (that
is, the number of blades), but it is little affected by the
1mpeller—t1p Mach number.

8. The impeller slip factor is independent of the Impeller—
tip Mach number, compressor flow coefficient, variation in
passage-height ratio with radius ratio, and compressibility of
the fluid. The slip factor is a function only of the angle
between blades on the conic flow surface.

9. The difference between velocities on the positive and
negative blade surfaces increases with increasing tip Mach
number and angle between blades on the conic flow surface
but is independent of the flow coefficient.

Lewis FuiGeT ProPULSION LABORATORY,
Nationar Aovisory CoMMITTEE FOR AERONAUTICS,
CiEvELAND, OQHIO, June 21, 1949. )



] SYMBOLS . S .
The following symbols a,re_used in thig report oy - ratio of specific heats )
A ratio (equation (B2)) 7 e transformed coordinate (equation (10b)}
a annular flow area (normal to conic. ﬂow sur- ] " a.ngle (coordinate of conic flow surface, posi-
faece) '~ - ftive in counterclockwise direction), radians
B " number of passages (or. Dblades) _ unless otherwise specified  _
b _grid spacing (fig. 8) - ... . o 7| Af angle between blades on conic flow surface
e __local speed of sound o (equation (6), (fig. 6)), radians unless other-’
exp - . exponential, [ezp (¥)=¢] wise specified ' '
H passige-height ratio, h/kr u .. - impeller slip factor _
h ~ passage height (normal to comc ﬂow surfece) £ -transformed coordinate (equation (10a))
M " relative Mach number __ . o L weight density of fluid
My - impeller-tip Mach number (equatwn (9)) ¢ compressor flow cocfficient (equation My
m passage-height exponent (equation (1 1)) ¥ dimensionless compressible stream funcuon
P absolute static pressure . ) (equations (4a) and (4b))
Q relative velocity ratio, g/e, "l w - -impeller angular veloclty (1n positive direc-
q velocity of fluid relative to blades, ui+o* tion of §) S
R conicradius: ratio (coordinate of conic_flow | Subscripts: :
surface), rfrr m 77 mean value at given radlus ratio .
R - residual : R negauve blade surface (blade surface in nege—
r conic radius (d1sta,nce along conig element ~ " tive direction of §) - -=
from apex of cone) (fig. 1) - 0 - absolute stagnation condition in region of
T absolute static (stream) temperature’ "< 77 uniform flow upstream of impeller N
U ‘relative tangential-velocity ratio, u/ec, P posmve blade surfaco (blade surface in posi-
% tangential component of ¢ (in positive dlrec- tive direction of 6} o
tion of 6) (fig. 2) 8 i 'standard solution T
14 __radial-velocity ratio, vfe, T 7 imbpeller tip - T
v radial component, of ¢ (elong comc element) 1 1,2,8,and 4 grid points adjacent to pomt bemg con51dered
(fig. 2) e — . (fg.3) : -
w total compressor flow rate - Supersei'ipts: ' R
o cone angle (fig. 1) 4 - - estimated value o
APPENDIX B o R —

CORRELATION EQUATIONS

Correlation equations are developed whereby flow con-
ditions (U, V, and ¢/¢,) within any impeller with straight
blades can be determined from the flow conditions for the
standard solution of this repoif.

TANGENTIAL-VELOCITY RATIO U

A plot of U against 7 (equal to 6/A8, equation (10b)) at &

equel to 0 for various design and operafing conditions (used

in the relaxation solutions of this report) is shown in figure 18. -

These curves are representative examples of the variation in
U for all values of ¢ at which U is significant. For a given

value of ¢ and », the tangential-velocity ratio U is seen to..
be a function primarily of the impeller-tip Mach number

M and the angle between blades on the conic flow surface A,
The tangential-velocity ratio is essentially independent of
the compressor flow rate (flow coefficient ¢) and the vari-
ation of passege-height ratio with B (passage-height ex-
ponent m). This dependence of U on My and A6 only (for
a given value of £ and 5) was found to exist af all radius

ratios at which U is s1gmﬁcant and was found to be a dlrect,___

relation such that .
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where K is a function of ¢ and 7 that is constemt for ell .
design and operating conditions. In terms of the standa.rd
solutlon therefore,

U'=AU, o

L ’ A= M. TAB
and where the subscript s refers to values from the standard
example and the prime indicates tho estimated value for the
nonstandard example. Equation (Bl} is the corrclation
equation for the relative tangential-velocity ratio.

The correlation equation (B1) and the other ‘correlation
equations to be developed in this appendix refer to the same
transformed coordinates ¢ and 4 for both the standard and non-
standard quantities in the equations. From equations (10a)

and (10b), these transformed coordinates are related to the
cooxdmates in the physmal (B,9 plane by

R=exp (EM)

®)
- (B2)

where - -

- (E—:ﬁ
and -

L o= B4)
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0 }

Example Conditior

l\‘ o 0O Standard
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FIGURE 18.—Variztion in relative tangentisl-velocity ratio across impeller passage for £=0.
Plotted points obtained from relaxation solution.

BRADIAL-VELOCITY RATIO V

The correlation equation for the radial-velocity ratio is
obtained from the equation for irrotational absolute motion
of a fluid particle. From reference 1,

13V
“‘MT‘RJfaR Y

which, after multiplying by A8, becomes
1 bV

Plots of V against g for various design and operating
conditions and for £ equal to 0 and —1.0 are shown in fig-
ure 19. These plots are representative of the variation in V
at all values of & }}-‘ithin the impeller. The slopes of the

velocity profiles -aai are seen to be nearly constant (except in

the immediate v1c1n1tv of the blade tip) so that from equa-
tion (B5)

— 9L AG= ( R+ SE (B5)

U, dU
(‘g‘!'gg (¢ only) (B6)
and equation (B5) can be integrated to give
V=V, + 2R+ RGO (B Hop ) BD

where V' equals V, and 4 equals zero along the positive blade
surface.
The velocity ratio 7, can be evaluated from the condition
V=Vnr
when

(Bg)

where Vp is the mean radial-velocity ratio, which is obtained
from continuity considerations as follows:

W=ppVarhBAS

or
W -ty RH
PolrCo
| so that
Va=—2 (B9)
P= pH

The mean den51ty ratio pm/p,, in equation (B9) is obtained
from equation (12) by assummg that for straight blades the
relative tangential velocity is zero and the radial-velocity
ratio is equal to the mean radial-velocity ratio Vi

2
/ Qz ~ Prm2= @
b RH
Po
7
£xample  Condition . 7
o @ Standard :-"
-6 a / w= 07 -
v 3 3M= 20 e
> 4 m=~14 o
a & Ag=18° %
L 3 i
Bl——-- =IO A ",'ﬁ
AL A I
-l - g - nl;:i'
4 e i ras
> e z ,ﬂ' v e,
.°~ r" - - -p P R
.3 al A all \
T . I d
> - & . B g
:I\ - .
£ p - &N
s ,1//; ‘
g
iz N
3
S
'Y
N v
g
It
Y
=2

4 -] g
&
n ( equols 'E-g-)

FIGURE 19.—Variation in radial-velocity ratio acress fmpeller passage for two values of £.

Plotted points |  obtained from relaxation solution.
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Equation (12) becomes = -

RSP SR |

AN |
oo o (ga) | o
o P

Equation (B10) gives an average value of the deantv mtlo
which is assumed to be a function of £ (that is, (logsR) /AB)
and independent of # (that is, 8/A6). -

From equation (B7) and the condition- glven by equa- '

tion (B8), the velocity ratio ¥, becomes.

V,=V,— RMpAd— RA"(—RU+

and equatwn (B6) becomes

RAaU o0

V=VatRMA0@—1)+—5 (5 +35E) (211—1) - @1
From equation (B3), -~ .~ CE T el
oU U & 1 aU |
3R °t dR RA§ B¢
and from equation (B1), _ -_______ TR
T2, m(UAH as @1y

so that equation (B11) becomes

V=V RMzA0(n—1) +‘1 (U,A(H— )(2,,—1)

which- is solved for bU,/bE

oU, $ —Va 2RJ]I,-AB Af
El a v

> 2 o1y - S

The term U, /3¢ can be ehmmated by equating it for the
standard and nonstandard cases. Therefme,

Tt AV =Vt

4(2n—1){ U 10— 00,1+ B~ RJ(MTABJ} (B13)

Equation (B13) is the cmrelatlon equatlon for the Iadml-
velocity ratio. o L =

REPORT 054—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

" the radlal-velocn,y ratio V.

STREAM-FUNCTION RATIO ¢/¢n ' -

The stream—funcuon ratio is obtained from the deﬁmtlon
of the stream function and from the correlation equation for
The definition of the stream
function i is given. by equation {4a):

o _e VIR (11'5,) |
\wluch, aftel being mu1t1p11ed by Afé and combmed W 11.11 -
equation (B11), becomes :

o ”RH(A@]:V FRIL (40— + 127 U+?,—}; (212—-1)]

- (B

.From the condition given by equation (B6) and with the

density ratio replaced by its mean value for E (that 1s
(log,R)[AB), equatxon (B14) can be mtegmtcd to glve

U E)U) — l):l
- (B1y)
where \l/,, is given by equation (5) and \//N/,, is cqual to zero

when 5 is equal to zero. Introducing equatmn (B1°) and
solving for oU,/0¢ give

[r,,.+ RM: (80 (1) +R§3

su, Ve (;—n) RMy(a0—D)r
aE (n—l)n

Al

The bcrm bU,/OE can be eliminated by cqualing 1t fm the
standard and nonstandard cases; therefors .

(I

n"(n— 1 {—2—5 [260-(0))+ B-R)@Lra0}) (B 19

fquation (BIB) is the correlation equatlon for the sueam-
_function ratio.

APPENDIX C

The impeller slip factor is defined as the ratio of the average
absolute tangential velocity of the fluid leaving the impeller
tlp to the tip speed of the impeller. This definition results
in the following equation (reference 1):

u.____'l_l_ﬁz"‘_ . _ o

Also, from equatlons Bl)end B2) - T

MF(H) @8,

which, from equation (C1), becomes

~ CORRELATION EGUATION FOR IMPELLER SLIP FACTOR -

L€y

1. Stanitz, John D.: Two-Dimensional Compressible Flow in Turbo-

IR

| ,u’—1=(y.—;) .(A;.‘:)_. : SR
di____. . . . - .

' Equatlon (CZ) is the correlatlon equatlon for the shp factor.
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TABLE [—STREAM-FUNCTION RATIO ¢/¢» FOR STANDARD SOLUTION
{Conditions for standard example: (p),=0.5; (Mr),=L1.5; (m},=~1.0; (46},=0.20044 radian; (+),=1.4]

163

| ' 7 (equals 8/Ag)
ow, | & £
] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.3168 0.70 —1.7039 0 0. 040 0.095 0.165 0.244 031 0. 451 0. 570 0. 702 0. 848 L 030
. 2041 75 —1.3736 0 .31 078 143 =220 .38 427 549 . 656 -840 1.000
. 2735 §0 —1.0654 1] 022 120 187 .291 -401 529 671 .81 Louo
. 2536 85 —. 760 0 014 047 101 7T .370 - .500 . 655 -82¢ 1.000
L2318 .90 —. 5031 ] 011 . 042 09v 171 .255 L8I7 - -850 814 1.000
L2275 .92 —.39581 [} 012 0i6 n2 B .20 . 506 651 -816 1.000
. 2202 o4 —. 2954 )] 016 054 .113 . 189 . 283 .392 L8517 660 820 1.00¢
. 2133 96 —. 1849 ] 023 069 132 .212 . 305 413 538 8756 -§28 L0060
. 2100 i —. 1154 0 . 029 . 146 228 .321 429 550 4+ .832 1.000
. 20687 .08 —. 0965 0 038 083 -163 247 .34 M7 566 ~697 839 1,000
. 2034 .99 —. 0480 0 (48 1351 185 270 -368 472 386 3 -850 Lo6o
. 2002 1.0 1] .062 133 210 297 .393 .499 611 L T34 .8n2 1.000
TABLE II—RADIAL-VELOCITY RATIO 17" FOR STANDARD SOLUTION
{Conditions for standard example: (@}, =0.5; (M) =1.5; (m) =—L0; (A8}, =0.2094{ radian; (), =1.4]
7 (equals 6/A8)
(Tmt, R &
0 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1.0
0. 3163 0.50 —1. 7030 0.103 0.148 0.130 0.234 0.278 0.323 0.368 0. 412 0. 456 0.501 0.549
. 2041 .78 ~1.3736 065 112 . 159 - 206 .253 .301 .38 .3 . 443 -462 543
. 2735 &0 - L 0A5t 033 . 082 132 L181 . 230 .329 37 498 .49 . 533
. 2536 85 —. 7760 008 . 059 110 . 160 210 259 309 357 .08 460 515
L2318 -, 5031 ~-.0n1 049 .099 LI48 L1064 239 330 .37 430 453
275 02 -. 3681 2 051 100 . 146 . 189 231 273 316 3 -413 . 463
L2202 —. 2054 010 105 L 148 186 224 . 261 -299 .342 .369 438
. 2133 26 —. 149 .025 072 115 151 . 184 218 248 .316 -340 407
- 2100 97 —. 54 037 .82 L122 . 155 .J84 213 241 270 .301 . 342 . 358
. 2087 98 —. 0965 055 095 .131 . 138 .18¢ 209 234 259 .321 -362
2034 .9¢ - .091 -1i5 . 139 161 . 184 205 227 249 271 . 268 .316
. 2002 Lo 0 . 189 131 .148 166 . 184 02 20 -238 254 .271 . 199
TABLE III—RELATIVE TANGENTIAL-VELOCITY RATIO U7 FOR STANDARD SOLUTION
{Conditions for standard example; (M7}, =L5; (A8),=0.20844 radizn]
« 7 (equals ¢/A8)
R, z .
] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0.
0. 7! - L.7030 0 0.008 0.015 0.020 0.023 0.024 0.023 0.020 0.015 0. 008 0
I —1.3738 0 .008 015 B .023 024 .023 .020 L015 . 0 -
.80 —1L 0654 '] 008 0L .018 .021 022 021 019 015 . 008 1]
- —. 7460 0 005 009 011 012 013 .013 012 010 . 006 0
90 —. 5031 0 - —. 004 —.007 |- —-008 - —. 07 ~. 005 —. 003 —. 001 0
92 -—. 3081 ] ~. 007 —.0L3 ~. 018 -. 021 -.022 —.021 —.018 —. 011 —. 005 0
.94 —. 2954 0. -.013 —. 024 —. 033 -.038 -.029 —.037 —.031 —~.022 —.012 0
.96 —. 1949 0 —.023 —. 041 —.054 —-.061 —. 063 —. 060 —.052 —. 039 —.021 0
o7 —. K54 ] —.030 —.053 —.068 —.076 - 007 —. 074 —.066 —. 050 -0 4]
.98 —. 09585 1} —. 00 —. 067 —. 083 —.091 —. 094 -, 091 —.081 —. 065 —.039 0
.90 —. 0480 0 —.053 —.083 —.100. —-. 109 - 112 —. 108 -—.09¢ —. 082 —.052 0
Lo 0 —.072 —. 102 —. 119 —. 128 - 131 —.127 —. 118 -. 100 —-.070 4]




